18. Kanahashi T, Yamada S, Tanaka M, Hirose A, Uwabe C, Kose K, Yoneyama A, Takeda T, Takakuwa T, A novel strategy to reveal the latent abnormalities in human embryonic stages from a large embryo collection, Anatomical Record, 299,8-24,2016 10.1002/ar.23281(概要), *299(1),2016の表紙に採用されました。DOI: 10.1002/ar.23206 (cover page)
Articular cartilage is roughly separated into three areas: the tangential, middle, and deep zones. The structure and molecular components of an additional important zone, the most superficial zone (MSZ), which directly faces the joint cavity, have yet to be conclusively elucidated. The purpose of the present study was to use multiple methods to study the MSZ in order to determine its structure.
Materials and methods
Knees from 16 pigs (age, 6 months) were used. Full-thickness cartilage specimens were harvested from the femoral groove. The MSZ was observed using light microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) in combination with histochemical and immunohistochemical methods.
Results
The combined findings from the three different observational methods indicate that the MSZ is subdivided into three layers. Among these three layers, collagen subtypes I, II, and III are present in the innermost (third) layer of the MSZ. Beneath the third layer, type II collagen is the predominant type, with small amounts of type III collagen. This layer beneath the third layer is considered to be the tangential layer.
Conclusions
Our observations indicate that the MSZ is subdivided into three layers. Further analysis of the molecular components in each layer may improve our understanding of the structure of the articular surface.
The morphological and histological changes of the choroid plexus (CP) during Carnegie stage (CS) 18 and CS23 were presented, based on magnetic resonance imaging data and histological serial section of human embryos from the Kyoto Collection of Human Embryos. The primordium of the CP was initially detected as a small lump at CS19 that grew caudally, so that the CP became crescent shaped. It developed in all directions after CS21, as the dorsal and frontal growth also became prominent. The CP formed a number of undulating surfaces at CS20, irregular bulges at CS21, and then three large clusters with two deep fissures on the caudal surface at CS23. The mean volume of the CP was 0.282±0.141 mm3 at CS19; it reached 16.8±8.77 mm3 at CS23. Additionally, the histology was different depending on the regions of the CP at all stages after CS20. The epithelium and angioblasts in the center of the stroma were proliferated in the proximal region, whereas the epithelium was differentiated and lobulated in the distal region where the blood vascular system was organized. The histological differentiation was mapped on the CP reconstructed from histological serial sections. The data suggested the correlation between morphological information obtained from magnetic resonance data sets and distribution of the differentiation. With the help of morphological analysis and histological findings, we have been able to categorize each CP into specific stages. These findings will be useful in clinical evaluation of development during the embryonic period.
5.Hamabe Y, Hirose A, Yamada S, Takakuwa T et al, Morphology and Morphometry of Fetal Liver at 16–26 Weeks of Gestation by Magnetic Resonance Imaging – Comparison with Embryonic Liver at Carnegie Stage 23, Hepatol Res,2013; 43: 639–647, doi: 10.1111/hepr.12000
Abstract
Aim
Normal liver growth was described morphologically and morphometrically using magnetic resonance imaging (MRI) data of human fetuses, and compared with embryonic liver to establish a normal reference chart for clinical use.
Methods
MRI images from 21 fetuses at 16–26 weeks of gestation and eight embryos at Carnegie stage (CS)23 were investigated in the present study. Using the image data, the morphology of the liver as well as its adjacent organs was extracted and reconstructed three-dimensionally. Morphometry of fetal liver growth was performed using simple regression analysis.
Results
The fundamental morphology was similar in all cases of the fetal livers examined. The liver tended to grow along the transversal axis. The four lobes were clearly recognizable in the fetal liver but not in the embryonic liver. The length of the liver along the three axes, liver volume and four lobes correlated with the bodyweight (BW). The morphogenesis of the fetal liver on the dorsal and caudal sides was affected by the growth of the abdominal organs, such as the stomach, duodenum and spleen, and retroperitoneal organs, such as the right adrenal gland and right kidney. The main blood vessels such as inferior vena cava, portal vein and umbilical vein made a groove on the surface of the liver. Morphology of the fetal liver was different from that of the embryonic liver at CS23.
Conclusion
The present data will be useful for evaluating the development of the fetal liver and the adjacent organs that affect its morphology.
2.Nakashima T, Hirose A, Yamada S, Uwabe C, Kose K, Takakuwa T, Morphometric analysis of the brain vesicles during the human embryonic period by magnetic resonance microscopic imaging, Congenit Anom (Kyoto). 2012 Mar;52(1):55-8, doi; 10.1111/j.1741-4520.2011.00345.x
ABSTRACT
The development of the brain vesicles between Carnegie stages (CS) 17 and 23 was analyzed morphometrically using 177 magnetic resonance image data derived from the Kyoto Collection of Human Embryos. Whole embryonic volume was 106.55 ± 21.08 mm3 at CS17, exponentially increasing to CS23 when it reached 1357.28 ± 392.20 mm3. Length of brain vesicles was 29.83 ± 2.52 mm at CS17, increased almost linearly and reached 49.31 ± 6.66 mm at CS23. The rate of increase was approximately 4.2 times higher on the dorsal side than on the ventral side. The increase in the length of the brain vesicles resulted mainly from that of the prosencephalon, and the rate of increase was three times higher on the dorsal side than on the ventral side of the prosencephalon.
External ears, one of the major face components, show an interesting movement during craniofacial morphogenesis in human embryo. The present study was performed to see if movement of the external ears in a human embryo could be explained by differential growth. In all, 171 samples between Carnegie stage (CS) 17 and CS 23 were selected from MR image datasets of human embryos obtained from the Kyoto Collection of Human Embryos. The three-dimensional absolute position of 13 representative anatomical landmarks, including external and internal ears, from MRI data was traced to evaluate the movement between the different stages with identical magnification. Two different sets of reference axes were selected for evaluation and comparison of the movements. When the pituitary gland and the first cervical vertebra were selected as a reference axis, the 13 anatomical landmarks of the face spread out within the same region as the embryo enlarged and changed shape. The external ear did move mainly laterally, but not cranially. The distance between the external and internal ear stayed approximately constant. Three-dimensionally, the external ear located in the caudal ventral parts of the internal ear in CS 17, moved mainly laterally until CS 23. When surface landmarks eyes and mouth were selected as a reference axis, external ears moved from the caudal lateral ventral region to the position between eyes and mouth during development. The results indicate that movement of all anatomical landmarks, including external and internal ears, can be explained by differential growth. Also, when the external ear is recognized as one of the facial landmarks and having a relative position to other landmarks such as the eyes and mouth, the external ears seem to move cranially.