アクセスカウンター

2024年11月
 123
45678910
11121314151617
18192021222324
252627282930  

金橋君の修論がAnat Recに掲載

肝臓なし
肝臓無形成個体の臓器の様子(CS21)

金橋くんの修士論文がAnat Recに掲載されました。おめでとうございます。

肝臓の立体化、定量(廣瀬さん)、肝臓の形態異常個体のスクリーニング(田中さん)の研究、高解像度のMRI、位相CTの撮像と、多くの協力と成果のおかげで、論文にすることができました。

  • 1156例(CS14-23)のMRI画像から、肝臓形成異常例をスクリーニング
  • 高解像度の位相コントラストX線CT(PCT)で胚子内部の詳細な解析
  • 極小肝臓グループの異常は、肝無形成(2例)、肝低形成(4)、および肝葉欠損(1)
  • これらは、肝造血障害により子宮内胎児死亡につながる可能性
  • 外部正常胚の子宮内集団における CS18 -21 の肝形成不全の有病率は、約 1.7%

18.Kanahashi T, Yamada S, Tanaka M, Hirose A, Uwabe C, Kose K, Yoneyama A, Takeda T, Takakuwa T, A novel strategy to reveal the latent abnormalities in human embryonic stages from a large embryo collection, Anatomical Record, 299,8-24,2016  10.1002/ar.23281(概要), *299(1),2016の表紙に採用されました。DOI: 10.1002/ar.23206 (cover page)

金橋くんの修士論文の概要>>

ABSTRACT

The cause of spontaneous abortion of normal conceptuses remains unknown in most cases. The study was aimed to reveal the latent abnormalities by using a large collection of embryo images from a magnetic resonance imaging (MRI) database and novel phase-contrast radiographic computed tomography (PXCT). MRI from 1,156 embryos between Carnegie stage (CS) 14 and CS23 from the Kyoto Collection were screened by using the volume of the liver as the target organ. Embryos with liver volumes ≥2 SD above or below the mean for the stage of development were screened and examined precisely on MRI. Embryos with potentially abnormal livers were further analyzed by using PXCT. Liver abnormality was detected in all 7 embryos in the extra-small liver group and in 2 of 8 embryos in the extra-large liver group. The abnormalities in the extra-small liver group consisted of hepatic agenesis (2 embryos), hepatic hypogenesis (4), and liver lobe defect (1). Among the 7 extra-small liver group, 2 had only liver abnormalities and 5 exhibited complications in other organs. Of the 2 embryos in the extra-large liver group, one had only a single liver abnormality and the other had a morphologically abnormal liver with complications in other organs. Most of such liver abnormality cases are not survive, as liver function becomes essential. The prevalence of liver malformations in CS18 and CS21 in the intrauterine population of externally normal embryos is approximately 1.7%. The present study is the first step toward the elucidation of the latent abnormalities resulting in spontaneous abortion in externally normal embryos. Anat Rec, 299:8–24, 2016.

張・高石・樋口君の論文が PlosOneに掲載

スクリーンショット 2015-06-05 13.47.31
ラット胎児の膝関節内靭帯の発生

張、高石、樋口君の論文が Plos oneに受諾されました。

ラットの膝関節の発生を、EFICを用いて検討しました。特にACL, PCL靭帯の形成に着目しました。

樋口君の卒業論文を基にして、例数を増やしてまとめました。

  • E16—E20 日ラットの十字靭帯の空間的発達変化を解析
  • E17; 十字靭帯の形状があきらか
  • E17 – E19; 前十字靭帯 (ACL) と後十字靭帯 (PCL) の長さが徐々に増加
  • E20 ;ACL, PCL長は劇的に増加
  • 大腿骨と脛骨への取り付け点間の距離は徐々に増加
  • ACL 角と PCL 角は徐々に減少した。十字靭帯の交差角度は 3 つの平面で変化
  • ラット十字靭帯の三次元構造は、出生直前に発達が完了

14. Xiangkai Zhang; Tomoki Aoyama; Ryota Takaishi; Shinya Higuchi; Shigehito Yamada; Hiroshi Kuroki; Tetsuya Takakuwa, Spatial change of cruciate ligaments in rat embryo knee joint by three-dimensional reconstruction.PLoS One. 2015 Jun 22;10(6):e0131092. doi: 10.1371/journal.pone.0131092. eCollection 2015.

Abstract

This study aimed to analyze the spatial developmental changes of rat cruciate ligaments by three-dimensional (3D) reconstruction using episcopic fluorescence image capture (EFIC). Cruciate ligaments of Wister rat embryos between embryonic day (E) 16 and E20 were analyzed. Samples were sectioned and visualized using EFIC. 3D reconstructions were generated using Amira software. The length of the cruciate ligaments, distances between attachment points to femur and tibia, angles of the cruciate ligaments and the cross angle of the cruciate ligaments were measured. The shape of cruciate ligaments was clearly visible at E17. The lengths of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) increased gradually from E17 to E19 and drastically at E20. Distances between attachment points to the femur and tibia gradually increased. The ACL angle and PCL angle gradually decreased. The cross angle of the cruciate ligaments changed in three planes. The primordium of the 3D structure of rat cruciate ligaments was constructed from the early stage, with the completion of the development of the structures occurring just before birth.

 

ヒト胚子期における脳形態形成の解析, NeuroImage, Data in Briefに掲載

Neuroimage
脳の形態形成(CS17-23)

中島君、片山さん、白石くんの3人の学生や、多くのOffice Assistantの協力を得て、6年かけて解析した論文「ヒト胚子期における脳形態形成」がNeuroimageに受諾されました。また、SupplyのビデオはData in Briefに、3D元データの一部はMorphoMに掲載されました。

  • ヒト胚子期の脳の三次元形成を提示
  • 脳の容積は、CS 13 – 23 間で 164.4 倍に増加
  • 胚全体に対する脳実質の体積の比率は、CS15-23の間でほぼ一定(11.6〜15.5%)
  • 分化成長にともなう脳組織の不均一な厚さを 3D で視覚化
  • 結果は、胚子期の脳の発生を定量化し評価する基準値になりうる可能性

13. Shiraishi N, Katayama A, Nakashima T, Yamada S, Uwabe C, Kose K, Takakuwa T, Morphology and morphometry of the human embryonic brain: A three-dimensional analysis, NeuroImage, 2015, 115, 96-103, 10.1016/j.neuroimage.2015.04.044, (概要), [OpenAccess]

12. Shiraishi N, Katayama A, Nakashima T, Yamada S, Uwabe C, Kose K, Takakuwa T, Three-dimensional morphology of the human embryonic brain, Data in Brief, 2015, 4, 116-118, 10.1016/j.dib.2015.05.001 [OpenAccess]

15. Shiraishi N, Katayama A, Nakashima T, Shiraki N, Yamada S, Uwabe C, Kose K, Takakuwa T, 3D model related to the publication: Morphology of the human embryonic brain and ventricles,  MorphoMuseuM 1 (3)-e3. doi: 10.18563/m3.1.3.e3. [OpenAccess]

Abstract

The three-dimensional dynamics and morphology of the human embryonic brain have not been previously analyzed using modern imaging techniques. The morphogenesis of the cerebral vesicles and ventricles was analyzed using images derived from human embryo specimens from the Kyoto Collection, which were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. A total of 101 embryos between Carnegie stages (CS) 13 and 23, without apparent morphological damage or torsion in the brain ventricles and axes, were studied. To estimate the uneven development of the cerebral vesicles, the volumes of the whole embryo and brain, prosencephalon, mesencephalon, and rhombencephalon with their respective ventricles were measured using image analyzing Amira™ software. The brain volume, excluding the ventricles (brain tissue), was 1.15 ± 0.43 mm3 (mean ± SD) at CS13 and increased exponentially to 189.10 ± 36.91 mm3 at CS23, a 164.4-fold increase, which is consistent with the observed morphological changes. The mean volume of the prosencephalon was 0.26 ± 0.15 mm3 at CS13. The volume increased exponentially until CS23, when it reached 110.99 ± 27.58 mm3. The mean volumes of the mesencephalon and rhombencephalon were 0.20 ± 0.07 mm3 and 0.69 ± 0.23 mm3 at CS13, respectively; the volumes reached 21.86 ± 3.30 mm3 and 56.45 ± 7.64 mm3 at CS23, respectively. The ratio of the cerebellum to the rhombencephalon was approximately 7.2% at CS20, and increased to 12.8% at CS23. The ratio of the volume of the cerebral vesicles to that of the whole embryo remained nearly constant between CS15 and CS23 (11.6–15.5%). The non-uniform thickness of the brain tissue during development, which may indicate the differentiation of the brain, was visualized with surface color mapping by thickness. At CS23, the basal regions of the prosencephalon and rhombencephalon were thicker than the corresponding dorsal regions. The brain was further studied by the serial digital subtraction of layers of tissue from both the external and internal surfaces to visualize the core region (COR) of the thickening brain tissue. The COR, associated with the development of nuclei, became apparent after CS16; this was particularly visible in the prosencephalon. The anatomical positions of the COR were mostly consistent with the formation of the basal gangliathalamus, and pyramidal tract. This was confirmed through comparisons with serial histological sections of the human embryonic brain. The approach used in this study may be suitable as a convenient alternative method for estimating the development and differentiation of the neural ganglia and tracts. These findings contribute to a better understanding of brain and cerebral ventricle development.

Highlights

Three-dimensional morphogenesis of the human embryonic brain was presented from MRI.•

The volume of three brain vesicles and ventricles were measured at 101 embryos.•

The brain volume exponentially increased 164.4-fold from Carnegie stage 13 to 23.•

The volume ratio of the brain to whole embryo remained nearly constant.•

The non-uniform thickness of the brain tissue during development was 3D visualized.

脾臓の形態形成(遠藤卒論)Antat Recに掲載

CS19;脾臓と胃

遠藤さんの卒業論文「ヒト胚子脾臓の形態形成」がAnat Recに掲載されました。

脾臓は、左上腹部の胃の後方に位置する腹腔内の代表的な器官です。脾臓は成人では。成人の脾臓の主な役割は、血液の濾過・不要な物質の除去と免疫系としてのリンパ球の産生です。ヒトにおける初期発生過程はこれまでほとんど知られていませんでした。本研究では、脾臓の形態形成、および脾臓内外の血管の形成過程についてCarnegie stageごとに記載しました。

CS20;脾臓と胃の組織像
  • CS14-17 ;脾臓はdorsal mesogastrium (DM) の膨らみとして認識
  • CS16まで;中皮は偽重層、のちに円柱上皮に置換
  • CS17以降;基底膜が明瞭、間葉細胞の分化
  • CS 18;細胞密度の高い領域が認識、造血細胞の検出
  • CS 20 の後;類洞、脾門部の形成
  • CS23;動静脈の確認
  • 成長速度(長さ)は胃とほぼ同じ

11.Endo A, Ueno S, Yamada S, Uwabe C, Takakuwa T, Morphogenesis of the spleen during the human embryonic period,  Anatomical Rec, 2015, 298, 820-826, doi: 10.1002/ar.23099

ABSTRACT

We aimed to observe morphological changes in the spleen from the emergence of the primordium to the end of the embryonic period using histological serial sections of 228 samples. Between Carnegie stages (CSs) 14 and 17, the spleen was usually recognized as a bulge in the dorsal mesogastrium (DM), and after CS 20, the spleen became apparent. Intrasplenic folds were observed later. A high-density area was first recognized in 6 of the 58 cases at CS 16 and in all cases examined after CS 18. The spleen was recognized neither as a bulge nor as a high-density area at CS 13. The mesothelium was pseudostratified until CS 16 and was replaced with high columnar cells and then with low columnar cells. The basement membrane was obvious after CS 17. The mesenchymal cells differentiated from cells in the DM, and sinus formation started at CS 20. Hematopoietic cells were detected after CS 18. The vessels were observed at CS 14 in the DM. Hilus formation was observed after CS 20. The parallel entries of the arteries and veins were observed at CS 23. The rate of increase in spleen length in relation to that of stomach length along the cranial-caudal direction was 0.51 ± 0.11, which remained constant during CSs 19 and 23, indicating that their growths were similar. These data may help to better understand the development of normal human embryos and to detect abnormal embryos in the early stages of development.

胎児側脳室の形態と長さ計測の有用性(竹谷卒論) Congenit Anomに掲載

竹谷さんの卒業論文が、 Congenital Anomalies 55巻(2015)に掲載されました。

本論文の内容は第104回日本病理学会総会で発表しました。

  • 妊娠中期 (16-25週) ヒト胎児の側脳室の形成を解析
  • 16週の;側脳室の前角、中心部、後角、下角の主要4領域が区分可能。
  • 側脳室は近接する大脳の外方、内方への成長の影響を受け、主に伸長と狭小化という変化を示す。
  • 6個のパラメータ (総前後長、前後角間長、後角長、中心部の厚さ、総側脳室高、下角間長) と頭蓋横径(BPD)との関連性をsimple regression analysisを用いて検討
  • BPDと関連性の高い計測値は、総前後長、前後角間長、後角長、中心部の厚さ(R2=0.80-0.93)
  • 総側脳室高、下角間長は中等度 (R2=0.56-0.73)
  • BPDと側脳室体積とは関連性がない(R2=0.13).
  • 脳室の計測は、胎内での胎児脳の健全な成長と発生を評価する標準的手法を確立するのに寄与する可能性あり
スクリーンショット 2014-07-11 20.53.16

Taketani K, Yamada S, Uwabe C, Okada T, Togash K, Takakuwa T, Morphological features and length measurements of fetal lateral ventricles at 16–25 weeks of gestation by magnetic resonance imaging, Congenit Anom (Kyoto), 2015, 55, 99-102. doi: 10.1111/cga.12076

Abstract

Normal growth of the lateral ventricles (LVs) was characterized three-dimensionally using magnetic resonance imaging (MRI) data from 16 human fetuses at 16–25 weeks of gestation. The LV was differentiated into four primary regions, the anterior horn, central parts, posterior horn, and inferior horn, at 16 weeks of gestation. The LV changed shape mainly by elongation and narrowing, which corresponded to the external and internal growth of the surrounding cerebrum. Six length parameters measured in the LV correlated with biparietal diameter by simple regression analysis (R2 range, 0.56–0.93), which may be valuable for establishing a standardized prenatal protocol to assess fetal well-being and development across intrauterine periods. No correlation was found between biparietal diameter and LV volume (R2 = 0.13).

膝関節形態形成の3次元的解析(高石卒論) ; Osteoarthritis Cartilageに掲載

knee joint
knee joint (E20)

高石くんの卒業論文「膝関節の形態形成; EFICを用いた3次元的解析」がOsteoarthritis Cartilage ( 特集号Imaging in Osteoarthritis)に掲載されました。

9. Takaishi R, Aoyama T, Takakuwa T, et al; Three-dimensional reconstruction of rat knee joint using episcopic fluorescence image capture, Osteoarthritis Cartilage, 2014; 22(10), 1401-1409. 10.1016/j.joca.2014.06.016

  • Episcopic fluorescence image capture(EFIC)を用いてラット膝関節腔の発生過程を三次元的に解析
  • ラットの膝関節腔は5か所から発生
    • E17;大腿膝蓋関節腔、内外側の大腿半月関節腔が発生し
    • E18;内外側の半月脛骨関節腔が発生する
    • E19;前十字靭帯、後十字靭帯が構築されるのに伴い、靭帯周囲の関節腔が形成
    • E20;関節腔が融合して完成
  • 関節腔が形成される原基において細胞の増殖が認められる(EFICでhigh-intensity)事から、関節腔は細胞増殖により能動的に形成される可能性を示唆

Summary

Objective

Development of the knee joint was morphologically investigated, and the process of cavitation was analyzed by using episcopic fluorescence image capture (EFIC) to create spatial and temporal three-dimensional (3D) reconstructions.

Methods

Knee joints of Wister rat embryos between embryonic day (E)14 and E20 were investigated. Samples were sectioned and visualized using an EFIC. Then, two-dimensional image stacks were reconstructed using OsiriX software, and 3D reconstructions were generated using Amira software.

Results

Cavitations of the knee joint were constructed from five divided portions. Cavity formation initiated at multiple sites at E17; among them, the femoropatellar cavity (FPC) was the first. Cavitations of the medial side preceded those of the lateral side. Each cavity connected at E20 when cavitations around the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) were completed.

Conclusion

Cavity formation initiated from six portions. In each portion, development proceeded asymmetrically. These results concerning anatomical development of the knee joint using EFIC contribute to a better understanding of the structural feature of the knee joint.

胃の立体像がAnat Recの表紙に採用

Anatomical Records 297巻5月号表紙
Anatomical Records 297巻5月号表紙

海外君、名古さんの論文で作成した胃の立体像が解剖学雑誌Anatomical Record 297巻5号の表紙に採用されるとともに、ビデオを結果として示すことのできるAR WOW-Video Articleの第1号の論文として採用されました。

8. Morphogenesis and Three-Dimensional Movement of the Stomach During the Human Embryonic Period (page C1)

N. Kaigai, A. Nako, S. Yamada, C. Uwabe, K. Kose and T. Takakuwa

Anat RecはAmerican Association of Anatomists (AAA)の公認雑誌で、100年以上の発行歴のある由緒ある雑誌です。永く世界の医学、解剖学、発生学の分野を牽引してきました。本雑誌は、さらに、最近のe-Page技術を取り入れたWOWという雑誌を本号から採用しました。これは、ビデオが論文の結果として重要な役割を果たす際にそのビデオが永久に保存できるようにしたものです。その第1号の論文として、海外君の胃の形態形成と動きについての論文が選ばれました。

Editorialでは、”Human Embryos are Turning on the e-Pages of AR”(ヒト胚子がARのe-Pageに灯をともす…)という題で, インタビューを受け、私たちの予想以上に讃えていただきました。(Anat Rec  297(5) ; 799–801, 2014)

Our rationale for imaging the human stomach during development.

“All of the authors are well-versed with the fact that the stomach develops as the local widening of the foregut at Carnegie Stage (CS) 13, as well as the morphology and position of the stomach in adults. But what are the developmental dynamics from the former to the latter? While I (Dr. Takakuwa) was a university student, I read a textbook that explained that the developmental dynamics of the stomach follow the order of linear movement along the caudal direction, rotation around the longitudinal (Z) axis, and rotation around the dorsoventral (X) axis. This explanation aroused my curiosity with regard to the position of the abdominal organs around the stomach, such as the esophagus, pancreas, and duodenum, which are restricted in their positions after CS17. For example, around CS20, movement of the stomach is restricted at both its entrance (cardia) and the exit (pyloric antrum) near the mid-sagittal plane.

We designed our study to sort out the dynamic process that places the stomach in its definitive position in the abdomen. Accordingly, we analyzed the external morphology and morphometry of the human embryonic stomach, as well as documented its precise 3D movements, using magnetic resonance (MR) imaging data of human embryos in the “Kyoto Collection”. We discovered that the line connecting the cardia and the pyloric antrum of the stomach does not rotate around the dorsoventral (X) axis, as widely believed, but rotates around the transverse (Y) axis. The stomach “appears” to move towards the left, laterally and caudally, as deflection and differential growth progresses. We found that the developmental morphology of the three-dimensionally reconstructed stomach was not “analogous” to that of adults or as described in recent textbooks. Rather, we found that the stomach’s developmental morphology is as documented in a study a century before (Lewis 1912), in which the stomach was precisely hand drawn by a special artist [note added by Editor: Lewis studied the stomachs of five human embryos that were 10 mm and 45 mm in length; Harvard Embryological Collection, Series 1000]. We are gratified that our MR imaging data of embryos enhance the value of the Kyoto Collection, not only as archives of historical specimens but also as useful research resources for the future.”

Contributed by Kaigai and colleagues, Kyoto University, Graduate School of Medicine.

胚子期の胃の形態と動き(海外,名古); Anat Recに掲載

海外くんの卒業論文がAnatomical recordに掲載されました。卒業後、 Office assistantとして2年かけて仕上げてくれました。教科書には、胃の動きは”下降”、”頭尾軸に対する回転”、”背腹軸に対する回転”と3つの動きにわけて説明されています。しかしながら実際の動きは立体空間的でありそう単純ではありませんでした。

8. Morphogenesis and three-dimensional movement of the stomach during the human embryonic period,

2014 May;297(5):791-7. doi: 10.1002/ar.22833.

  • 377例の胚子MR画像を用いて、CS16-23の胃の形態形成と動きを検討
  • stageごとに特徴的な形態
    • CS18; 胃角、胃底部の隆起
    • CS18-20; 胃角は90度程度であったが、それ以降鋭角
    • CS20; 噴門、幽門の分化がみられた。
  • 大弯(M)の3次元的な動き(M), は噴門(C)、幽門(P)の動きと大きく異なる。
    • C、PはCS16-23の間正中矢状面上にほぼ存在
    • Mは尾側、左側にCS22まで大きく移動
    • CPは左右軸を中心に回転
    • 胃の最大平面CPMはおもに頭尾軸を中心に回転
  • 胃の偏位とdifferential growthにより胃は左側、尾側に移動するように見えると推察
CS22の胃; 左から、胃の立体像、 最大断面像、解剖学的観察点、空間座標内の表示

本研究の立体画像元データの一部はMorphoMuseuMに受諾されました。

20. Nako A, Kaigai N, Shiraki N, Yamada S, Uwabe C, Kose K, Takakuwa T, 3D models related to the publication: Morphogenesis of the stomach during the human embryonic period, MorphoMuseuM, in press

ABSTRACT

The stomach develops as the local widening of the foregut after Carnegie stage (CS) 13 that moves in a dramatic and dynamic manner during the embryonic period. Using the magnetic resonance images of 377 human embryos, we present the morphology, morphometry, and three-dimensional movement of the stomach during CS16 and CS23. The stomach morphology revealed stage-specific features. The angular incisura and the cardia were formed at CS18. The change in the angular incisura angle was approximately 90° during CS19 and CS20, and was <90° after CS 21. The prominent formations of the fundus and the pylorus differentiate at around CS20. Morphometry of the stomach revealed that the stomach gradually becomes “deflected” during development. The stomach may appear to move to the left laterally and caudally due to its deflection and differential growth. The track of the reference points in the stomach may reflect the visual three-dimensional movement. The movement of point M, representing the movement of the greater curvature, was different from that of points C (cardia) and P (pyloric antrum). The P and C were located just around the midsagittal plane in all the stages observed. Point M moved in the caudal-left lateral direction until CS22. Moreover, the vector CP does not rotate around the dorsoventral axis, as widely believed, but around the transverse axis. The plane CPM rotated mainly around the longitudinal axis. The data obtained will be useful for prenatal diagnosis in the near future.